Tag Archives: .net core

Propriétés et éléments MSBuild partagés avec Directory.Build.props

Pour être honnête, je n’ai jamais vraiment aimé MSBuild jusqu’à récemment. Les fichiers de projet générés par Visual Studio étaient immondes, l’essentiel de leur contenu était redondant, il fallait décharger les projets pour les éditer, c’était mal documenté… Mais avec l’avènement de .NET Core et du nouveau format de projet, plus léger, MSBuild est devenu un bien meilleur outil.

MSBuild 15 a introduit une nouvelle fonctionnalité assez sympa : les imports implicites (je ne sais pas si c’est le nom officiel, mais c’est celui que j’utiliserai). En gros, vous pouvez créer un fichier nommmé Directory.Build.props n’importe où dans votre solution, et il sera automatiquement importé par tous les projets sous le répertoire qui contient ce fichier. Cela permet de partager très facilement des propriétés et éléments communs entre les projets. Cette fonctionnalité est décrite en détail sur cette page.

Par exemple, si vous voulez partager certaines métadonnées entre plusieurs projets, créer simplement un fichier Directory.Build.props dans le dossier parent de vos projets :

<Project>

  <PropertyGroup>
    <Version>1.2.3</Version>
    <Authors>John Doe</Authors>
  </PropertyGroup>

</Project>

On peut aussi faire des choses plus intéressantes, comme activer et configurer StyleCop pour tous les projets :

<Project>

  <PropertyGroup>
    <!-- Common ruleset shared by all projects -->
    <CodeAnalysisRuleset>$(MSBuildThisFileDirectory)MyRules.ruleset</CodeAnalysisRuleset>
  </PropertyGroup>

  <ItemGroup>
    <!-- Add reference to StyleCop analyzers to all projects  -->
    <PackageReference Include="StyleCop.Analyzers" Version="1.0.2" />
    
    <!-- Common StyleCop configuration -->
    <AdditionalFiles Include="$(MSBuildThisFileDirectory)stylecop.json" />
  </ItemGroup>

</Project>

Notez que la variable $(MSBuildThisFileDirectory) fait référence au répertoire contenant le fichier MSBuild courant. Une autre variable utile est $(MSBuildProjectDirectory), qui fait référence au répertoire du projet en cours de génération.

MSBuild cherche le fichier Directory.Build.props en partant du répertoire du projet et en remontant les dossiers jusqu’à ce qu’il trouve un fichier correspondant, puis s’arrête de chercher. Dans certains cas, il peut être utile de définir des propriétés communes à tous les projets, et d’en ajouter d’autres qui ne s’appliquent qu’à un sous-répertoire. Pour faire cela, il faut que le fichier Directory.Build.props le plus "profond" importe explicitement celui du répertoire parent :

  • (rootDir)/Directory.build.props:
<Project>

  <!-- Properties common to all projects -->
  <!-- ... -->
  
</Project>
  • (rootDir)/tests/Directory.build.props:
<Project>

  <!-- Import parent Directory.build.props -->
  <Import Project="../Directory.Build.props" />

  <!-- Properties common to all test projects -->
  <!-- ... -->
  
</Project>

La documentation mentionne une autre approche, utilisant la fonction GetPathOfFileAbove, mais cela ne semblait pas fonctionner quand j’ai essayé… De toute façon, je pense qu’il est plus simple d’utiliser un chemin relatif, on risque moins de se tromper.

Utiliser les imports implicites apporte quelques avantages :

  • des fichiers de projet plus petits, puisque les propriétés et éléments identiques peuvent être factorisés dans des fichiers communs
  • un seul point de référence : si tous les projets référencent le même package NuGet, la version à référencer est définie à un seul endroit; il n’est plus possible d’avoir des incohérences.

Cette approche a cependant un inconvénient : Visual Studio n’a pas la notion de l’origine d’une variable ou d’un élément, donc si vous changez une propriété ou une référence de package dans l’IDE (via les pages de propriétés du projet ou le gestionnaire de packages NuGet), elle sera modifiée dans le fichier de projet lui-même, et non dans le fichier Directory.Build.props. De mon point de vue, ce n’est pas un gros problème, parce que j’ai pris l’habitude d’éditer les projets manuellement plutôt que d’utiliser l’IDE, mais ça peut être gênant pour certaines personnes.

Si vous voulez un exemple réel de l’utilisation de cette technique, jetez un oeil au repository de FakeItEasy, où nous utilisons plusieurs fichiers Directory.Build.props pour garder les projets propres et concis.

Notez que vous pouvez également créer un fichier Directory.Build.targets, suivant les mêmes principes, pour définir des cibles communes.

Amélioration des performances de Linq dans .NET Core

Depuis le temps qu’on en parle, vous êtes sans doute au courant que Microsoft a publié une version open-source et multiplateforme de .NET : .NET Core. Cela signifie que vous pouvez maintenant créer et exécuter des applications .NET sous Linux ou macOS. C’est déjà assez cool en soi, mais ça ne s’arrête pas là : .NET Core apporte aussi beaucoup d’améliorations à la Base Class Library.

Par exemple, Linq est plus rapide dans .NET Core. J’ai fait un petit benchmark pour comparer les performances de certaines méthodes couramment utilisées de Linq, et les résultats sont assez impressionnants :


Le code complet de ce benchmark est disponible ici. Comme pour tous les microbenchmarks, les résultats ne sont pas à prendre pour argent comptant, mais ça donne quand même une idée des améliorations.

Certaines lignes de ce tableau sont assez surprenantes. Comment Select peut-il s’exécuter 5000 fois presque instantanément ? D’abord, il faut garder à l’esprit que la plupart des opérateurs Linq ont une exécution différée : ils ne font rien tant que qu’on n’énumère pas le résultat, donc quelque chose comme array.Select(i => i * i) s’exécute en temps constant (ça renvoie juste une séquence "lazy", sans consommer les éléments de array). C’est pourquoi j’ai ajouté un appel à Count() dans mon benchmark, pour m’assurer que le résultat est bien énuméré.

Pourtant, ce test s’exécute 5000 fois en 413µs… Cela est possible grâce à une optimisation dans l’implémentation .NET Core de Select et Count. Une propriété utile de Select est qu’il produit une séquence avec le même nombre d’éléments que la séquence source. Dans .NET Core, Select tire parti de cette propriété. Si la source est une ICollection<T> ou un tableau, il renvoie un objet énumérable qui garde la trace du nombre d’élément. Count peut ensuite récupérer directement la valeur et la renvoyer sans énumérer la séquence, ce qui donne un résultat en temps constant. L’implémentation de .NET 4.6.2, en revanche, énumère naïvement la séquence produite par Select, ce qui prend beaucoup plus longtemps.

Il est intéressant de noter que dans cette situation, .NET Core ne va pas exécuter la projection spécifiée dans Select, c’est donc un breaking change par rapport à .NET 4.6.2 pour du code qui dépend des effets de bord de la projection. Cela a été identifié comme un problème, qui a déjà été corrigé sur la branche master, donc la prochaine version n’aura plus cette optimisation et exécutera bien la projection sur chaque élément.

OrderBy suivi de Count() s’exécute aussi presque instantanément… Les développeurs de Microsoft auraient-ils inventé un algorithme de tri en O(1) ? Malheureusement, non… L’explication est la même que pour Select : puisque OrderBy préserve le nombre d’éléments, l’information est conservée pour pouvoir être utilisée par Count, et il n’est pas nécessaire de vraiment trier les éléments avant d’obtenir leur nombre.

Bon, ces cas étaient des améliorations assez évidentes (qui ne vont d’ailleurs pas rester, comment mentionné précédemment). Mais que dire du cas de SelectAndToArray ? Dans ce test, j’appelle ToArray() sur le résultat de Select, pour être certain que la projection soit bien exécutée sur chaque élément : cette fois, on ne triche pas. Pourtant, l’implémentation de .NET Core arrive encore à être 68% plus rapide que celle du framework .NET classique dans ce scénario. La raison est liée aux allocations : puisque l’implémentation .NET Core sait combien il y a d’éléments dans le résultat de Select, elle peut directement allouer un tableau de la bonne taille. Dans .NET 4.6.2, cette information n’est pas disponible, donc il faut commencer par allouer un petit tableau, y copier des éléments jusqu’à ce qu’il soit plein, puis allouer un tableau plus grand, y copier les données du premier tableau, y copier les éléments suivants de la séquence jusqu’à ce qu’il soit plein, etc. Cela cause de nombreuses allocations et copies, d’où la performance dégradée. Il y a quelques années, j’avais suggéré des versions optimisées de ToList et ToArray, auxquelles on passait le nombre d’éléments. L’implémentation de .NET Core fait grosso modo la même chose, sauf qu’il n’y a pas besoin de passer la taille manuellement, elle est transmise à travers la chaine de méthodes Linq.

Where et WhereAndToArray sont tous les deux environ 8% plus rapides sur .NET Core 1.1. En examinant le code, (.NET 4.6.2, .NET Core), je ne vois pas de différences évidentes qui pourraient expliquer les meilleures performances, donc je soupçonne qu’elles sont dues à des améliorations du runtime. Dans ce cas, ToArray ne connait pas le nombre d’éléments dans la séquence (puisqu’on ne peut pas prédire le nombre d’éléments que Where va laisser passer), il ne peut donc pas utiliser la même optimisation qu’avec Select, et doit construire le tableau en utilisant l’approche plus lente.

On a déjà parlé du cas de OrderBy + Count(), qui n’était pas une comparaison équitable puisque l’implémentation de .NET Core ne triait pas réellement la séquence. Le cas de OrderByAndToArray est plus intéressant, car le tri ne peut pas être évité. Et dans ce cas, l’implémentation de .NET Core est un peu plus lente que celle de .NET 4.6.2. Je ne sais pas très bien pourquoi; là aussi, l’implémentation est très similaire, à part quelques refactorisations dans la version .NET Core.

Au final, Linq a l’air globalement plus rapide dans .NET Core que dans 4.6.2, ce qui est une très bonne nouvelle. Bien sûr, je n’ai benchmarké qu’un nombre limité de scénarios, mais cela montre quand même que l’équipe .NET Core travaille dur pour optimiser tout ce qu’ils peuvent.